Difference between revisions of "Electromagnetic Mass and the Inertial Properties of Nuclei"

From Natural Philosophy Wiki
Jump to navigation Jump to search
(Imported from text file)
 
(Imported from text file)
Line 12: Line 12:
 
According to the theory of relativity the inertial mass of any physical system should be a scalar quantity (no matter how distorted its electromagnetic structure) and the 'excess' inertial mass of electromagnetic origin should not be observable. Experimental evidence on both these points was examined for nuclei. Nuclei are particularly significant for this test because they are the only structures (excepting the elementary particles) which possess an appreciable fraction of their net mass in the form of electrostatic energy, they are the only structures which are formed as a result of the equilibrium between two very different types of known forces (electromagnetic, and nuclear), and their dimensions are large enough that there is reason to trust the validity of the electromagnetic laws. It is found that the inertial mass of a distorted nucleus, as measured by a mass spectrometer, has no observable asymmetry to an accuracy of 1 part in 100 of the asymmetry which is calculated to exist as a consequence of the electromagnetic energy. It is found that a comparison of nuclear mass differences (as measured by the mass spectrometer and by nuclear reactions) shows that the 'excess' electromagnetic inertial mass is not observable, to an accuracy of 1 part in 600.  Report I-92, 14 March, 1960, Coordinated Science Laboratory, University of Illinois, formerly available from U. S. Department of Commerce, Clearinghouse for Federal Scientific and Technical Information, document acquisition number AD0625706. This organization no longer exists under that name and the document is apparently no longer available at any price to the taxpayers who paid for the work. [http://www.dtic.mil/srch/doc?collection=t3&id=AD0625706 Further citation information]. It is referenced in Phipps (1986), Van Flandern (1998), and Phipps (2009).
 
According to the theory of relativity the inertial mass of any physical system should be a scalar quantity (no matter how distorted its electromagnetic structure) and the 'excess' inertial mass of electromagnetic origin should not be observable. Experimental evidence on both these points was examined for nuclei. Nuclei are particularly significant for this test because they are the only structures (excepting the elementary particles) which possess an appreciable fraction of their net mass in the form of electrostatic energy, they are the only structures which are formed as a result of the equilibrium between two very different types of known forces (electromagnetic, and nuclear), and their dimensions are large enough that there is reason to trust the validity of the electromagnetic laws. It is found that the inertial mass of a distorted nucleus, as measured by a mass spectrometer, has no observable asymmetry to an accuracy of 1 part in 100 of the asymmetry which is calculated to exist as a consequence of the electromagnetic energy. It is found that a comparison of nuclear mass differences (as measured by the mass spectrometer and by nuclear reactions) shows that the 'excess' electromagnetic inertial mass is not observable, to an accuracy of 1 part in 600.  Report I-92, 14 March, 1960, Coordinated Science Laboratory, University of Illinois, formerly available from U. S. Department of Commerce, Clearinghouse for Federal Scientific and Technical Information, document acquisition number AD0625706. This organization no longer exists under that name and the document is apparently no longer available at any price to the taxpayers who paid for the work. [http://www.dtic.mil/srch/doc?collection=t3&id=AD0625706 Further citation information]. It is referenced in Phipps (1986), Van Flandern (1998), and Phipps (2009).
  
[[Category:Scientific Paper]]
+
[[Category:Scientific Paper|electromagnetic mass inertial properties nuclei]]
  
 
[[Category:Relativity]]
 
[[Category:Relativity]]

Revision as of 10:20, 1 January 2017

Scientific Paper
Title Electromagnetic Mass and the Inertial Properties of Nuclei
Author(s) Chalmers W Sherwin
Keywords Electromagnetic Mass, Inertial Properties of Nuclei
Published 1960
Journal None
No. of pages 21

Abstract

According to the theory of relativity the inertial mass of any physical system should be a scalar quantity (no matter how distorted its electromagnetic structure) and the 'excess' inertial mass of electromagnetic origin should not be observable. Experimental evidence on both these points was examined for nuclei. Nuclei are particularly significant for this test because they are the only structures (excepting the elementary particles) which possess an appreciable fraction of their net mass in the form of electrostatic energy, they are the only structures which are formed as a result of the equilibrium between two very different types of known forces (electromagnetic, and nuclear), and their dimensions are large enough that there is reason to trust the validity of the electromagnetic laws. It is found that the inertial mass of a distorted nucleus, as measured by a mass spectrometer, has no observable asymmetry to an accuracy of 1 part in 100 of the asymmetry which is calculated to exist as a consequence of the electromagnetic energy. It is found that a comparison of nuclear mass differences (as measured by the mass spectrometer and by nuclear reactions) shows that the 'excess' electromagnetic inertial mass is not observable, to an accuracy of 1 part in 600. Report I-92, 14 March, 1960, Coordinated Science Laboratory, University of Illinois, formerly available from U. S. Department of Commerce, Clearinghouse for Federal Scientific and Technical Information, document acquisition number AD0625706. This organization no longer exists under that name and the document is apparently no longer available at any price to the taxpayers who paid for the work. Further citation information. It is referenced in Phipps (1986), Van Flandern (1998), and Phipps (2009).