Difference between revisions of "The Constant Gravitation Potential of Light: Part 1)Theory; Part 2)Physical Aspects"

From Natural Philosophy Wiki
Jump to navigation Jump to search
(Imported from text file)
 
(Imported from text file)
 
(One intermediate revision by the same user not shown)
Line 12: Line 12:
 
==Abstract==
 
==Abstract==
  
In NPA 2004, Heaston reported on a theoretical derivation of a gravitational potential of (...) and called it the constant gravitational potential of light and radiant energy. This derivation was a part of a more general theme on ?The Characterization of Gravitational Collapse as a Mass-Energy Phase Change?. At the same conference, Marquardt talked about ?The Potential of Potentials: Old News from a Time-Honored Concept?, and mentioned the ubiquitous background occurrence of the  (...) potential. It is now possible to show that the constant gravitation potential of light is an unexpected consequence of the theoretical derivation of the Einstein field equations of gravitation starting with the Newton law of gravitation. Recognition that (...) is specifically associated with the gravitation potential of light changes the interpretations of a number of theories in physics. For example, a singularity is theoretically impossible. This paper will be presented in two parts: Part 1 focusing on the theory (Heaston) and Part 2 emphasizing the physical meaning (Marquardt).[[Category:Scientific Paper]]
+
In NPA 2004, Heaston reported on a theoretical derivation of a gravitational potential of (...) and called it the constant gravitational potential of light and radiant energy. This derivation was a part of a more general theme on ?The Characterization of Gravitational Collapse as a Mass-Energy Phase Change?. At the same conference, Marquardt talked about ?The Potential of Potentials: Old News from a Time-Honored Concept?, and mentioned the ubiquitous background occurrence of the  (...) potential. It is now possible to show that the constant gravitation potential of light is an unexpected consequence of the theoretical derivation of the Einstein field equations of gravitation starting with the Newton law of gravitation. Recognition that (...) is specifically associated with the gravitation potential of light changes the interpretations of a number of theories in physics. For example, a singularity is theoretically impossible. This paper will be presented in two parts: Part 1 focusing on the theory (Heaston) and Part 2 emphasizing the physical meaning (Marquardt).
  
[[Category:Gravity]]
+
[[Category:Scientific Paper|constant gravitation potential light part theory part physical aspects]]
 +
 
 +
[[Category:Gravity|constant gravitation potential light part theory part physical aspects]]

Latest revision as of 19:59, 1 January 2017

Scientific Paper
Title The Constant Gravitation Potential of Light: Part 1)Theory; Part 2)Physical Aspects
Author(s) Robert J Heaston, Peter Marquardt
Keywords gravitational potential, gravitational collapse
Published 2006
Journal Proceedings of the NPA
Volume 3
Number 2
Pages 161-172

Abstract

In NPA 2004, Heaston reported on a theoretical derivation of a gravitational potential of (...) and called it the constant gravitational potential of light and radiant energy. This derivation was a part of a more general theme on ?The Characterization of Gravitational Collapse as a Mass-Energy Phase Change?. At the same conference, Marquardt talked about ?The Potential of Potentials: Old News from a Time-Honored Concept?, and mentioned the ubiquitous background occurrence of the  (...) potential. It is now possible to show that the constant gravitation potential of light is an unexpected consequence of the theoretical derivation of the Einstein field equations of gravitation starting with the Newton law of gravitation. Recognition that (...) is specifically associated with the gravitation potential of light changes the interpretations of a number of theories in physics. For example, a singularity is theoretically impossible. This paper will be presented in two parts: Part 1 focusing on the theory (Heaston) and Part 2 emphasizing the physical meaning (Marquardt).