Theory of Holors: A Generalization of Tensors

From Natural Philosophy Wiki
Jump to navigation Jump to search
Theory of Holors: A Generalization of Tensors
Error creating thumbnail: File missing
Author Domina Eberle Spencer, Parry H Moon
Published 1986 / 2005 (pb)
Publisher Cambridge University Press
Pages 412
ISBN 0521019001

The word holor is a term coined by the authors to describe a mathematical entity that is made up of one or more independent quantities, and includes complex numbers, scalars, vectors, matrices, tensors, quaternions, and other hypernumbers. Holors, thus defined, have been known for centuries but each has been developed more or less independently, accompanied by separate nomenclature and theory. This book demonstrates how these complicated subjects can be made simple by using a single notation that applies to all holors, both tensor and nontensor. The authors consider all possible types of holors and develop holor algebra and holor calculus in the most general sense. Thus the reader will learn to develop a new holor that fits the application, rather than forcing an application onto a holor representation that is known but that does not perfectly describe the application. The discussion includes nontensors having no transformation and holors that transform in more complicated ways than allowed with ordinary tensors. This opens up the possibility to devise a holor for a new physical application, without being limited to a few conventional types of holor. This book should establish a method by which students and teachers can learn vector and tensor analysis via a uniform treatment. Graduate students and professionals in engineering, physics. applied mathematics, chemistry, biology, psychology, and other analytical sciences should find this to be a useful and innovative work.

Book Description
Attempts to simplify the complexities of the holor a mathematical entity made up of one or more independent quantities including most hypernumbers, such as complex numbers, scalars, vectors, matrices, tensors, quaternions. Considers all types of holors and develops a holor algebra and a holor calculus.

Links to Purchase Book