Using E = mc^2 Consistently to Reveal Aether Details and to Unify Physics

From Natural Philosophy Wiki
Revision as of 19:12, 1 January 2017 by Maintenance script (talk | contribs) (Imported from text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Scientific Paper
Title Using E = mc^2 Consistently to Reveal Aether Details and to Unify Physics
Read in full Link to paper
Author(s) Carl R Littmann
Keywords graviton
Published 2005
Journal Proceedings of the NPA
Volume 3
Number 1
No. of pages 7
Pages 134-140

Read the full paper here


Einstein wisely predicted that when the Sun loses a given mass, m, the sun radiates an amount of energy, mc^2.  A purer case occurs when an electron and a positron mass interact and annihilate, and energy radiation occurs.  But it is wrong and inconsistent to assume that only photon energy results and flies away from the scene, since that assumption disregards ?gravity' (or ?graviton' generation). Despite the fact that the ?gravitational effect' is extremely small, it exists; and some high-energy photons have given up some of their energy (and mass) to create something (i.e., gravitons) even before the photons have completely left the scene. That is what Mossbauer experiments imply, and also what consistent application of E=mc^2 requires; even though gravity is classified as a ?very weak force' and associated energy. When ?inconsistent Einstein Theorists' neglected or lost those SMALL ?gravitons'; they also lost a LARGE Concept; and also lost their chance for a fine Grand Unification Theory. In this paper, we retrieve both; and we calculate an effective 'gravitonic' ethereal density, and a typical graviton's energy and mass.  Addendum to Abstract (4-15-2009):  The following two sentences replace one that previously speculated about gravitons' second or third order effects.  "Gravitons contribute to an aether, which easily also produces the pressure required for the 'nuclear force paradigm'."  "Some other comments about this Abstract are found on page 1 of my article."