Difference between revisions of "Can Physics Be Derived From Monogenic Functions?"

From Natural Philosophy Wiki
Jump to navigation Jump to search
(Imported from text file)
 
(Imported from text file)
Line 9: Line 9:
 
==Abstract==
 
==Abstract==
  
This is a paper about geometry and how one can derive several fundamental laws of physics from a simple postulate of geometrical nature. The method uses monogenic functions analysed in the algebra of 5-dimensional spacetime, exploring the 4-dimensional waves that they generate. With this method one is able to arrive at equations of relativistic dynamics, quantum mechanics and electromagnetism. Fields as disparate as cosmology and particle physics will be influenced by this approach in a way that the paper only suggests. The paper provides an introduction to a formalism which shows prospects of one day leading to a theory of everything and suggests several areas of future development.[[Category:Scientific Paper]]
+
This is a paper about geometry and how one can derive several fundamental laws of physics from a simple postulate of geometrical nature. The method uses monogenic functions analysed in the algebra of 5-dimensional spacetime, exploring the 4-dimensional waves that they generate. With this method one is able to arrive at equations of relativistic dynamics, quantum mechanics and electromagnetism. Fields as disparate as cosmology and particle physics will be influenced by this approach in a way that the paper only suggests. The paper provides an introduction to a formalism which shows prospects of one day leading to a theory of everything and suggests several areas of future development.
 +
 
 +
[[Category:Scientific Paper|physics derived monogenic functions]]
  
 
[[Category:Relativity]]
 
[[Category:Relativity]]

Revision as of 10:07, 1 January 2017

Scientific Paper
Title Can Physics Be Derived From Monogenic Functions?
Author(s) Jose Borges de Almeida
Keywords Monogenic Functions
Published 2009
Journal None

Abstract

This is a paper about geometry and how one can derive several fundamental laws of physics from a simple postulate of geometrical nature. The method uses monogenic functions analysed in the algebra of 5-dimensional spacetime, exploring the 4-dimensional waves that they generate. With this method one is able to arrive at equations of relativistic dynamics, quantum mechanics and electromagnetism. Fields as disparate as cosmology and particle physics will be influenced by this approach in a way that the paper only suggests. The paper provides an introduction to a formalism which shows prospects of one day leading to a theory of everything and suggests several areas of future development.