Difference between revisions of "Evolution of the Plasma Universe: II The Formation of Systems of Galaxies"

From Natural Philosophy Wiki
Jump to navigation Jump to search
(Imported from text file)
 
(Imported from text file)
 
(One intermediate revision by the same user not shown)
Line 11: Line 11:
 
==Abstract==
 
==Abstract==
  
The model of the plasma universe, inspired by totally unexpected phenomena observed with the advent and application of fully three-dimensional electromagnetic particle-in-cell simulations to filamentary plasmas, consists of studying the interaction between field-aligned current-conducting, galactic-dimensioned plasma sheets or filaments (Birkeland currents). In a preceding paper, the evolution of the interaction spanned some 108-109 years, where simulational analogs of synchrotron-emitting double radio galaxies and quasars were discovered. This paper reports the evolution through the next 109-5 ?? 109 years. In particular, reconfiguration and compression of tenuous cosmic plasma due to the self-consistent magnetic fields from currents conducted through the filaments leads to the formation of elliptical, peculiar, and barred and normal spiral galaxies. The importance of the electromagnetic pinch in producing condense states and initiating gravitational collapse of dusty galactic plasma to stellisimals, then stars, is discussed. Simulation data are directly compared to galaxy morphology types, synchrotron flux, Hi distributions, and fine detail structure in rotational velocity curves. These comparisons suggest that knowledge obtained from laboratory, simulation, and magnetospheric plasmas offers not only to enhance our understanding of the universe, but also to provide feedback information to laboratory plasma experiments from the unprecedented source of plasma data provided by the plasma universe.[[Category:Scientific Paper]]
+
The model of the plasma universe, inspired by totally unexpected phenomena observed with the advent and application of fully three-dimensional electromagnetic particle-in-cell simulations to filamentary plasmas, consists of studying the interaction between field-aligned current-conducting, galactic-dimensioned plasma sheets or filaments (Birkeland currents). In a preceding paper, the evolution of the interaction spanned some 108-109 years, where simulational analogs of synchrotron-emitting double radio galaxies and quasars were discovered. This paper reports the evolution through the next 109-5 ?? 109 years. In particular, reconfiguration and compression of tenuous cosmic plasma due to the self-consistent magnetic fields from currents conducted through the filaments leads to the formation of elliptical, peculiar, and barred and normal spiral galaxies. The importance of the electromagnetic pinch in producing condense states and initiating gravitational collapse of dusty galactic plasma to stellisimals, then stars, is discussed. Simulation data are directly compared to galaxy morphology types, synchrotron flux, Hi distributions, and fine detail structure in rotational velocity curves. These comparisons suggest that knowledge obtained from laboratory, simulation, and magnetospheric plasmas offers not only to enhance our understanding of the universe, but also to provide feedback information to laboratory plasma experiments from the unprecedented source of plasma data provided by the plasma universe.
  
[[Category:Cosmology]]
+
[[Category:Scientific Paper|evolution plasma universe ii formation systems galaxies]]
[[Category:Electric Universe]]
+
 
 +
[[Category:Cosmology|evolution plasma universe ii formation systems galaxies]]
 +
[[Category:Electric Universe|evolution plasma universe ii formation systems galaxies]]

Latest revision as of 19:31, 1 January 2017

Scientific Paper
Title Evolution of the Plasma Universe: II The Formation of Systems of Galaxies
Author(s) Anthony L Peratt
Keywords {{{keywords}}}
Published 1986
Journal IEEE Transactions on Plasma Science
Volume 14
Number 6
Pages 763-778

Abstract

The model of the plasma universe, inspired by totally unexpected phenomena observed with the advent and application of fully three-dimensional electromagnetic particle-in-cell simulations to filamentary plasmas, consists of studying the interaction between field-aligned current-conducting, galactic-dimensioned plasma sheets or filaments (Birkeland currents). In a preceding paper, the evolution of the interaction spanned some 108-109 years, where simulational analogs of synchrotron-emitting double radio galaxies and quasars were discovered. This paper reports the evolution through the next 109-5 ?? 109 years. In particular, reconfiguration and compression of tenuous cosmic plasma due to the self-consistent magnetic fields from currents conducted through the filaments leads to the formation of elliptical, peculiar, and barred and normal spiral galaxies. The importance of the electromagnetic pinch in producing condense states and initiating gravitational collapse of dusty galactic plasma to stellisimals, then stars, is discussed. Simulation data are directly compared to galaxy morphology types, synchrotron flux, Hi distributions, and fine detail structure in rotational velocity curves. These comparisons suggest that knowledge obtained from laboratory, simulation, and magnetospheric plasmas offers not only to enhance our understanding of the universe, but also to provide feedback information to laboratory plasma experiments from the unprecedented source of plasma data provided by the plasma universe.