Space Generation Model of Gravity, Cosmic Numbers & Dark Energy

From Natural Philosophy Wiki
Jump to navigation Jump to search
Scientific Paper
Title Space Generation Model of Gravity, Cosmic Numbers & Dark Energy
Read in full Link to paper
Author(s) Richard Benish
Keywords Gravity, Cosmology, Relativity, Einstein, Large Numbers, Dark Energy
Published 2009
Journal None
No. of pages 29

Read the full paper here

Abstract

This is an updated and augmented version of the previously published paper, Space Generation Model of Gravitation and the Large Numbers Coincidences. The basis of the gravity model is that motion sensing devices---most notably accelerometers and clocks---consistently tell the truth about their state of motion. When the devices are attached to a uniformly rotating body this is undoubtedly true. Uniform rotation is sometimes referred to as an example of stationary motion. It is proposed here, by analogy, that gravitation is also an example of stationary motion. Einstein used the rotation analogy to deduce spacetime curvature. Similar logic suggests that in both cases the effects of curvature are caused by motion. A key distinction is that, unlike rotation, gravitational motion is not motion through space, but rather motion of space. Extending the analogy further, gravitation is conceived as a process involving movement into a fourth space dimension. Space and matter are dynamic, continuous extensions of each other, which implies that the average cosmic density is a universal constant. Assuming this to be the case leads to a cosmological model according to which ratios such as the gravitational to electrostatic force, electron mass to proton mass, Bohr radius to cosmic radius, and constants such as the fine structure constant, Hubble constant, the saturation density of nuclear matter and the energy density of the cosmic background radiation are all very simply related to one another. Measured values of these numbers are discussed in sufficient detail to facilitate judging whether or not the found and predicted relationships are due to chance. The notorious "cosmological constant" (dark energy) problem is also addressed in light of the new gravity model. Finally, it is emphasized that the model lends itself to a relatively easy laboratory test.