Difference between revisions of "Amp?re vs. Grassmann on Experimental Grounds"

From Natural Philosophy Wiki
Jump to navigation Jump to search
(Imported from text file)
 
(Imported from text file)
Line 11: Line 11:
 
==Abstract==
 
==Abstract==
  
The growing interest in a thorough revision of the tenets of classical electrodynamics compels the physics community to reconsider the dominating magnetic field rationale applied to electrodynamics since the time of Lorentz. The torque-production mechanism presently attributed to homopolar machines, which is based on Grassmann's force, has been definitively ruled out by recent crucial experimentation. Conversely, Ampere's force law, restating the Newtonian symmetry requirement for energy conversion, fully explains homopolar torque production.[[Category:Scientific Paper]]
+
The growing interest in a thorough revision of the tenets of classical electrodynamics compels the physics community to reconsider the dominating magnetic field rationale applied to electrodynamics since the time of Lorentz. The torque-production mechanism presently attributed to homopolar machines, which is based on Grassmann's force, has been definitively ruled out by recent crucial experimentation. Conversely, Ampere's force law, restating the Newtonian symmetry requirement for energy conversion, fully explains homopolar torque production.
 +
 
 +
[[Category:Scientific Paper|amp vs grassmann experimental grounds]]
  
 
[[Category:Electrodynamics]]
 
[[Category:Electrodynamics]]

Revision as of 09:57, 1 January 2017

Scientific Paper
Title Amp?re vs. Grassmann on Experimental Grounds
Author(s) Jorge A Guala-Valverde, Ricardo A Achilles
Keywords {{{keywords}}}
Published 2010
Journal Galilean Electrodynamics
Volume 21
Number 1
Pages 18-21

Abstract

The growing interest in a thorough revision of the tenets of classical electrodynamics compels the physics community to reconsider the dominating magnetic field rationale applied to electrodynamics since the time of Lorentz. The torque-production mechanism presently attributed to homopolar machines, which is based on Grassmann's force, has been definitively ruled out by recent crucial experimentation. Conversely, Ampere's force law, restating the Newtonian symmetry requirement for energy conversion, fully explains homopolar torque production.