Difference between revisions of "Ether Theory of Gravitation: Why and How?"

From Natural Philosophy Wiki
Jump to navigation Jump to search
(Imported from text file)
 
(Imported from text file)
Line 10: Line 10:
 
==Abstract==
 
==Abstract==
  
Gravitation might make a preferred frame appear, and with it a clear space/time separation?the latter being, a priori, needed by quantum mechanics (QM) in curved space-time. Several models of gravitation with an ether are discussed: they assume metrical effects in an heterogeneous ether and/or a Lorentz-symmetry breaking. One scalar model, starting from a semi-heuristic view of gravity as a pressure force, is detailed. It has been developed to a complete theory including continuum dynamics, cosmology, and links with electromagnetism and QM. To test the theory, an asymptotic scheme of post-Newtonian approximation has been built. That version of the theory which is discussed here predicts an internal-structure effect, even at the point-particle limit. The same might happen also in general relativity (GR) in some gauges, if one would use a similar scheme. Adjusting the equations of planetary motion on an ephemeris leaves a residual difference with it; one should adjust the equations using primary observations. The same effects on light rays are predicted as with GR, and a similar energy loss applies to binary pulsars.[[Category:Scientific Paper]]
+
Gravitation might make a preferred frame appear, and with it a clear space/time separation?the latter being, a priori, needed by quantum mechanics (QM) in curved space-time. Several models of gravitation with an ether are discussed: they assume metrical effects in an heterogeneous ether and/or a Lorentz-symmetry breaking. One scalar model, starting from a semi-heuristic view of gravity as a pressure force, is detailed. It has been developed to a complete theory including continuum dynamics, cosmology, and links with electromagnetism and QM. To test the theory, an asymptotic scheme of post-Newtonian approximation has been built. That version of the theory which is discussed here predicts an internal-structure effect, even at the point-particle limit. The same might happen also in general relativity (GR) in some gauges, if one would use a similar scheme. Adjusting the equations of planetary motion on an ephemeris leaves a residual difference with it; one should adjust the equations using primary observations. The same effects on light rays are predicted as with GR, and a similar energy loss applies to binary pulsars.
 +
 
 +
[[Category:Scientific Paper|ether theory gravitation]]
  
 
[[Category:Relativity]]
 
[[Category:Relativity]]

Revision as of 10:22, 1 January 2017

Scientific Paper
Title Ether Theory of Gravitation: Why and How?
Author(s) Mayeul Arminjon
Keywords Aether, Gravity
Published 2008
Journal None
Pages 139-202

Abstract

Gravitation might make a preferred frame appear, and with it a clear space/time separation?the latter being, a priori, needed by quantum mechanics (QM) in curved space-time. Several models of gravitation with an ether are discussed: they assume metrical effects in an heterogeneous ether and/or a Lorentz-symmetry breaking. One scalar model, starting from a semi-heuristic view of gravity as a pressure force, is detailed. It has been developed to a complete theory including continuum dynamics, cosmology, and links with electromagnetism and QM. To test the theory, an asymptotic scheme of post-Newtonian approximation has been built. That version of the theory which is discussed here predicts an internal-structure effect, even at the point-particle limit. The same might happen also in general relativity (GR) in some gauges, if one would use a similar scheme. Adjusting the equations of planetary motion on an ephemeris leaves a residual difference with it; one should adjust the equations using primary observations. The same effects on light rays are predicted as with GR, and a similar energy loss applies to binary pulsars.