Difference between revisions of "Magnetic Deflection of Electrons Using Vacuum Tubes"

From Natural Philosophy Wiki
Jump to navigation Jump to search
(Imported from text file)
 
(Imported from text file)
 
Line 11: Line 11:
 
==Abstract==
 
==Abstract==
  
This paper summarizes experiments that use a vacuum tube to determine the magnetic field necessary to prevent electrons from reaching the anode in a high vacuum diode. In addition to determining this magnetic cutoff for a given electron energy, the experiment includes the determination of the magnetic flux of an air-core solenoid and the calculation of the velocity of 10-volt electrons. This summary also lays the foundation for determining the electron charge-to-mass ratio (e/m) using data collected in this experiment. This experiment is based on the Hull method devised by the inventor of the magnetron diode tube in 1921.[[Category:Scientific Paper]]
+
This paper summarizes experiments that use a vacuum tube to determine the magnetic field necessary to prevent electrons from reaching the anode in a high vacuum diode. In addition to determining this magnetic cutoff for a given electron energy, the experiment includes the determination of the magnetic flux of an air-core solenoid and the calculation of the velocity of 10-volt electrons. This summary also lays the foundation for determining the electron charge-to-mass ratio (e/m) using data collected in this experiment. This experiment is based on the Hull method devised by the inventor of the magnetron diode tube in 1921.
 +
 
 +
[[Category:Scientific Paper|magnetic deflection electrons using vacuum tubes]]

Latest revision as of 10:39, 1 January 2017

Scientific Paper
Title Magnetic Deflection of Electrons Using Vacuum Tubes
Author(s) Timothy E Raney
Keywords Charge-to-mass ratio, do-it-yourself, vacuum tube
Published 2005
Journal Electric Spacecraft Journal
Number 39
Pages 19-20

Abstract

This paper summarizes experiments that use a vacuum tube to determine the magnetic field necessary to prevent electrons from reaching the anode in a high vacuum diode. In addition to determining this magnetic cutoff for a given electron energy, the experiment includes the determination of the magnetic flux of an air-core solenoid and the calculation of the velocity of 10-volt electrons. This summary also lays the foundation for determining the electron charge-to-mass ratio (e/m) using data collected in this experiment. This experiment is based on the Hull method devised by the inventor of the magnetron diode tube in 1921.