Difference between revisions of "On Synchronisation of Clocks in Free Fall Around a Central Body"

From Natural Philosophy Wiki
Jump to navigation Jump to search
(Imported from text file)
 
(Imported from text file)
Line 10: Line 10:
 
==Abstract==
 
==Abstract==
  
The conventional nature of synchronisation is discussed in inertial frames, where it is found that theories using different synchronisations are experimentally equivalent to special relativity. On the other hand, in accelerated systems only a theory maintaining an absolute simultaneity is consistent with the natural behavior of clocks. The principle of equivalence is discussed, and it is found that any synchronisation can be used locally in a freely falling frame. Whatever the synchronisation chosen, the first derivatives of the metric tensor disapear and a geodesic is locally a straight line. But it is shown that only a synchronisation maintaining absolute simultaneity makes it possible to define time consistently on circular orbits of a Schwarzschild metric.[[Category:Scientific Paper]]
+
The conventional nature of synchronisation is discussed in inertial frames, where it is found that theories using different synchronisations are experimentally equivalent to special relativity. On the other hand, in accelerated systems only a theory maintaining an absolute simultaneity is consistent with the natural behavior of clocks. The principle of equivalence is discussed, and it is found that any synchronisation can be used locally in a freely falling frame. Whatever the synchronisation chosen, the first derivatives of the metric tensor disapear and a geodesic is locally a straight line. But it is shown that only a synchronisation maintaining absolute simultaneity makes it possible to define time consistently on circular orbits of a Schwarzschild metric.
 +
 
 +
[[Category:Scientific Paper|synchronisation clocks free fall central body]]
  
 
[[Category:Aether]]
 
[[Category:Aether]]
 
[[Category:Relativity]]
 
[[Category:Relativity]]

Revision as of 10:48, 1 January 2017

Scientific Paper
Title On Synchronisation of Clocks in Free Fall Around a Central Body
Author(s) Fran?ois Goy
Keywords special and general relativity, synchronisation, one-way velocity of light, ether, principle of equivalence
Published 1997
Journal None
Pages 7-18

Abstract

The conventional nature of synchronisation is discussed in inertial frames, where it is found that theories using different synchronisations are experimentally equivalent to special relativity. On the other hand, in accelerated systems only a theory maintaining an absolute simultaneity is consistent with the natural behavior of clocks. The principle of equivalence is discussed, and it is found that any synchronisation can be used locally in a freely falling frame. Whatever the synchronisation chosen, the first derivatives of the metric tensor disapear and a geodesic is locally a straight line. But it is shown that only a synchronisation maintaining absolute simultaneity makes it possible to define time consistently on circular orbits of a Schwarzschild metric.