On the Incorrectness of the Lagrange Formalism as Applied to Magnetic Phenomena

From Natural Philosophy Wiki
Revision as of 10:51, 30 December 2016 by Maintenance script (talk | contribs) (Imported from text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Scientific Paper
Title On the Incorrectness of the Lagrange Formalism as Applied to Magnetic Phenomena
Author(s) Yuri I Petrov
Keywords freely moving charges, magnetic moment, magnetic energy, Hamiltonian function, Lagrange function, Lorentz? force
Published 2010
Journal Galilean Electrodynamics
Volume 21
Number S2
Pages 23-29

Abstract

A critical analysis reveals the invalidity of the established idea that movement of free charges in a magnetic field could be described with a help of the analytical Lagrange mechanics: the given system is non-conservative and non-holonomic. As the Lorentz force in the equation of charge movement was silently supposed to be an active force, the magnetic energy u0H (u0 is the magnetic moment of orbital electron and H is the magnetic field, and ?dot? denotes scalar product) turns out numerically equal to a fraction of the kinetic energy of the electron in the plane perpendicular to the direction of H. Consequently, a routine introducing into Lagrangian of the term with a vector potential, which is equivalent to u0H, resulting in paradoxical doubling of the corresponding fraction of the kinetic energy. This occurs irrespective of the magnetic field strength. As a result, the applied Lagrange?s formalism and notations of Lagrangian and Hamiltonian lose their meanings. Therefore, expressions obtained with a help of the Lagrange mechanics become inapplicable for deducing the equation of charge motion in a magnetic field or for calculating the magnetic magnitudes. The Lorentz force actually acts upon a moving charge as a passive non-holonomic linkage imposing constraints upon the direction of its velocity, but it is not able to add the kinetic energy to the particle.