Difference between revisions of "The Fundamental Assumptions of Relativity"

From Natural Philosophy Wiki
Jump to navigation Jump to search
(Imported from text file)
 
(Imported from text file)
Line 14: Line 14:
 
==Abstract==
 
==Abstract==
  
The paper discusses in detail the fundamental assumptions that are necessary for the derivation of special relativity theory and in particular for the derivation of Lorentz coordinate transformation. It is shown that the usual postulate of the constancy of speed of light is not needed. This is a generalization that is useful for studying the space-times with gravitational fields present in them, including the space-time of the Universe, since it is well known that the gravitational potential affects not only the clock rates but also the speed of light.[[Category:Scientific Paper]]
+
The paper discusses in detail the fundamental assumptions that are necessary for the derivation of special relativity theory and in particular for the derivation of Lorentz coordinate transformation. It is shown that the usual postulate of the constancy of speed of light is not needed. This is a generalization that is useful for studying the space-times with gravitational fields present in them, including the space-time of the Universe, since it is well known that the gravitational potential affects not only the clock rates but also the speed of light.
 +
 
 +
[[Category:Scientific Paper|fundamental assumptions relativity]]
  
 
[[Category:Relativity]]
 
[[Category:Relativity]]

Revision as of 11:15, 1 January 2017

Scientific Paper
Title The Fundamental Assumptions of Relativity
Read in full Link to paper
Author(s) Jerry Hynecek
Keywords {{{keywords}}}
Published 2011
Journal Proceedings of the NPA
Volume 8
No. of pages 6
Pages 277-282

Read the full paper here

Abstract

The paper discusses in detail the fundamental assumptions that are necessary for the derivation of special relativity theory and in particular for the derivation of Lorentz coordinate transformation. It is shown that the usual postulate of the constancy of speed of light is not needed. This is a generalization that is useful for studying the space-times with gravitational fields present in them, including the space-time of the Universe, since it is well known that the gravitational potential affects not only the clock rates but also the speed of light.