Difference between revisions of "Work Done on Photons During Refraction: Improved Symmetry From a More Consistent Expression for Photon Energy"

From Natural Philosophy Wiki
Jump to navigation Jump to search
(Imported from text file)
 
(Imported from text file)
 
(One intermediate revision by the same user not shown)
Line 12: Line 12:
 
==Abstract==
 
==Abstract==
  
<em>By<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>direct substitution from</em> E = mc<sup><span style="FONT-SIZE: x-small">2</span></sup> ''and'' <img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" /> = h(mv)<sup><span style="FONT-SIZE: x-small">&#8722;1</span></sup>, ''energy becomes'' E = hc<sup><span style="FONT-SIZE: x-small">2</span></sup>(<img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" />v)<sup><span style="FONT-SIZE: x-small">&#8722;1</span></sup>. ''This<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>reduces to Planck's equation if, and only if'', v = c. ''It<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>follows from Snell's law that a photon undergoing refraction will<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>gain energy'' <img border="0" alt="sigma" align="bottom" src="http://physicsessays.aip.org/stockgif3/sgr.gif" />E = hc<sup><span style="FONT-SIZE: x-small">2</span></sup>[(<img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" />v)<sup><span style="FONT-SIZE: x-small">&#8722;1</span></sup> &#8722; (<img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" /><sub><span style="FONT-SIZE: x-small">0</span></sub>C)<sup><span style="FONT-SIZE: x-small">&#8722;1</span></sup>], ''where'' <img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" /><sub><span style="FONT-SIZE: x-small">0</span></sub> ''is its wavelength'' in vacuo.<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>''This very small energy gain arises from work done on<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>the photon's mass by the refracting medium in decelerating the<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>photon from'' c ''to'' v. ''The medium therefore looses internal<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>energy while the photon is passing through, regaining it when<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>the photon leaves to resume speed'' c. ''Photon momentum is<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>a linear, monotone-increasing function of speed'', p = hc(<img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" /><sub><span style="FONT-SIZE: x-small">0</span></sub>v)<sup><span style="FONT-SIZE: x-small">&#8722;1</span></sup>. ''The reason photons<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>do not have rest mass is because they cannot rest<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>in space'' (v = 0) ''for the same reason massive particles cannot<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>rest in time'' (v = c): ''In either case the energy would<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>be infinite. EPR-type paradoxes can be resolved by replacing the<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>notion of self-interference with recognition of the fact that'' <img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" /><span style="FONT-SIZE: x-small"><sub>''x''</sub><sup>&nbsp;</sup></span>''is the extent of the'' x-''axis that is instantaneously occupied<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>by a particle''.[[Category:Scientific Paper]]
+
<em>By<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>direct substitution from</em> E = mc<sup><span style="FONT-SIZE: x-small">2</span></sup> ''and'' <img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" /> = h(mv)<sup><span style="FONT-SIZE: x-small">&#8722;1</span></sup>, ''energy becomes'' E = hc<sup><span style="FONT-SIZE: x-small">2</span></sup>(<img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" />v)<sup><span style="FONT-SIZE: x-small">&#8722;1</span></sup>. ''This<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>reduces to Planck's equation if, and only if'', v = c. ''It<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>follows from Snell's law that a photon undergoing refraction will<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>gain energy'' <img border="0" alt="sigma" align="bottom" src="http://physicsessays.aip.org/stockgif3/sgr.gif" />E = hc<sup><span style="FONT-SIZE: x-small">2</span></sup>[(<img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" />v)<sup><span style="FONT-SIZE: x-small">&#8722;1</span></sup> &#8722; (<img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" /><sub><span style="FONT-SIZE: x-small">0</span></sub>C)<sup><span style="FONT-SIZE: x-small">&#8722;1</span></sup>], ''where'' <img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" /><sub><span style="FONT-SIZE: x-small">0</span></sub> ''is its wavelength'' in vacuo.<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>''This very small energy gain arises from work done on<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>the photon's mass by the refracting medium in decelerating the<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>photon from'' c ''to'' v. ''The medium therefore looses internal<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>energy while the photon is passing through, regaining it when<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>the photon leaves to resume speed'' c. ''Photon momentum is<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>a linear, monotone-increasing function of speed'', p = hc(<img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" /><sub><span style="FONT-SIZE: x-small">0</span></sub>v)<sup><span style="FONT-SIZE: x-small">&#8722;1</span></sup>. ''The reason photons<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>do not have rest mass is because they cannot rest<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>in space'' (v = 0) ''for the same reason massive particles cannot<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>rest in time'' (v = c): ''In either case the energy would<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>be infinite. EPR-type paradoxes can be resolved by replacing the<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>notion of self-interference with recognition of the fact that'' <img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" /><span style="FONT-SIZE: x-small"><sub>''x''</sub><sup>&nbsp;</sup></span>''is the extent of the'' x-''axis that is instantaneously occupied<sup><span style="FONT-SIZE: x-small">&nbsp;</span></sup>by a particle''.
  
[[Category:Relativity]]
+
[[Category:Scientific Paper|work photons refraction improved symmetry consistent expression photon energy]]
 +
 
 +
[[Category:Relativity|work photons refraction improved symmetry consistent expression photon energy]]

Latest revision as of 20:14, 1 January 2017

Scientific Paper
Title Work Done on Photons During Refraction: Improved Symmetry From a More Consistent Expression for Photon Energy
Author(s) Allen D Allen
Keywords refraction, Planck's equation, Snell's law, mass and energy conservation, photon, particle, relativistic spacetime, wavelength, self-interference, Heisenberg uncertainty principle
Published 1988
Journal Physics Essays
Volume 1
Number 2
Pages 82-84

Abstract

By direct substitution from E = mc2 and <img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" /> = h(mv)−1, energy becomes E = hc2(<img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" />v)−1. This reduces to Planck's equation if, and only if, v = c. It follows from Snell's law that a photon undergoing refraction will gain energy <img border="0" alt="sigma" align="bottom" src="http://physicsessays.aip.org/stockgif3/sgr.gif" />E = hc2[(<img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" />v)−1 − (<img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" />0C)−1], where <img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" />0 is its wavelength in vacuo. This very small energy gain arises from work done on the photon's mass by the refracting medium in decelerating the photon from c to v. The medium therefore looses internal energy while the photon is passing through, regaining it when the photon leaves to resume speed c. Photon momentum is a linear, monotone-increasing function of speed, p = hc(<img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" />0v)−1. The reason photons do not have rest mass is because they cannot rest in space (v = 0) for the same reason massive particles cannot rest in time (v = c): In either case the energy would be infinite. EPR-type paradoxes can be resolved by replacing the notion of self-interference with recognition of the fact that <img border="0" alt="lambda" align="bottom" src="http://physicsessays.aip.org/stockgif3/lgr.gif" />x is the extent of the x-axis that is instantaneously occupied by a particle.