Action-at-a-Distance and Local Action in Gravitation
Scientific Paper | |
---|---|
Title | Action-at-a-Distance and Local Action in Gravitation |
Author(s) | Toivo Jaakkola |
Keywords | Action-at-a-Distance, Local Action, Gravitation |
Published | 2007 |
Journal | None |
Abstract
A new theoretical framework is presented by giving a summary of equilibrium cosmology (EC) recently developed by the author. In EC, gravitation is an equilibrium process providing energy balance in systems of baryonic matter, while electromagnetic radiation is the contrary effect. Gravitation on a body is a pressure effect of gravitational quanta (gravitons) conducted from the background field by the gravitation field of the body. The formation of the field is outlined. Gravitons and photons interact via electrogravitational coupling (EGC), which causes the redshift effect and an analogous weakening of gravity, as well as the cosmic background radiation which is a re-emission equilibrium effect. From pressure-induced gravitation and EGC, a dynamical theory (EGD) can be constructed which unifies the gravitation effects in systems on different scales; until now, numerous ad hoc hypotheses had been nec essary to explain the effects.
When EGD is applied to the two-body problem, Newton?s law is obtained directly. In it the force is a sum of two equal terms which are due to the two fields of graviton flow into the bodies, which are mutually screened by the second body. While gravitation is basically not an attractive but rather a repulsive pressure force, the two-body attraction results from the screening effect. The dilemma of a distant action versus a local action character of gravitation receives a simple but unexpected solution: both are true. While the momentum due to the pressure of gravitons flowing towards the second body has a distinctly local character, the momentum obtained due to the screening of the body's own field by the second body is an action at the distance of that body. Both are expressions of a single interaction between the mass systems and the background field.