Difference between revisions of "Fresnel Drag vs. Einstein Velocity a Case for Further Investigation"

From Natural Philosophy Wiki
Jump to navigation Jump to search
(Imported from text file)
 
(Imported from text file)
 
(One intermediate revision by the same user not shown)
Line 11: Line 11:
 
==Abstract==
 
==Abstract==
  
When the group velocity, as opposed to the phase velocity, of light is measured, Einstein's predictions for one-way light velocities in a transparent medium differ from Fresnel's predictions by substantial amounts, even at speeds as low as our speed relative to the Cosmic Microwave Background Radiation (365,000 m/s). Calculations show that if Einstein is wrong, then a measurable light round-trip time difference will be found between clockwise and counterclockwise fiber optic light paths, where each light path has synthetic fused silica fiber in one direction and air-core fiber in the other direction. The magnitude of the difference will be a function of velocity of the experiment and observer (both the same) relative to a presently unknown preferred reference frame (i.e. a frame preferred by physics not by physicists for convenience). If the light round-trip time difference is measured on an oscilloscope and the length of the loops is about 1,000 m, then a speed as low as 365,000 m/s relative to the preferred reference frame can be detected.[[Category:Scientific Paper]]
+
When the group velocity, as opposed to the phase velocity, of light is measured, Einstein's predictions for one-way light velocities in a transparent medium differ from Fresnel's predictions by substantial amounts, even at speeds as low as our speed relative to the Cosmic Microwave Background Radiation (365,000 m/s). Calculations show that if Einstein is wrong, then a measurable light round-trip time difference will be found between clockwise and counterclockwise fiber optic light paths, where each light path has synthetic fused silica fiber in one direction and air-core fiber in the other direction. The magnitude of the difference will be a function of velocity of the experiment and observer (both the same) relative to a presently unknown preferred reference frame (i.e. a frame preferred by physics not by physicists for convenience). If the light round-trip time difference is measured on an oscilloscope and the length of the loops is about 1,000 m, then a speed as low as 365,000 m/s relative to the preferred reference frame can be detected.
  
[[Category:Relativity]]
+
[[Category:Scientific Paper|fresnel drag vs einstein velocity case investigation]]
 +
 
 +
[[Category:Relativity|fresnel drag vs einstein velocity case investigation]]

Latest revision as of 19:33, 1 January 2017

Scientific Paper
Title Fresnel Drag vs. Einstein Velocity a Case for Further Investigation
Author(s) Dan Wagner
Keywords {{{keywords}}}
Published 2008
Journal Galilean Electrodynamics
Volume 19
Number 3
Pages 43-50

Abstract

When the group velocity, as opposed to the phase velocity, of light is measured, Einstein's predictions for one-way light velocities in a transparent medium differ from Fresnel's predictions by substantial amounts, even at speeds as low as our speed relative to the Cosmic Microwave Background Radiation (365,000 m/s). Calculations show that if Einstein is wrong, then a measurable light round-trip time difference will be found between clockwise and counterclockwise fiber optic light paths, where each light path has synthetic fused silica fiber in one direction and air-core fiber in the other direction. The magnitude of the difference will be a function of velocity of the experiment and observer (both the same) relative to a presently unknown preferred reference frame (i.e. a frame preferred by physics not by physicists for convenience). If the light round-trip time difference is measured on an oscilloscope and the length of the loops is about 1,000 m, then a speed as low as 365,000 m/s relative to the preferred reference frame can be detected.