*Scale Unification ? A Universal Scaling Law For Organized Matter*

Scientific Paper | |
---|---|

Title | Scale Unification ? A Universal Scaling Law For Organized Matter |

Author(s) | Nassim Haramein, Elizabeth A Rauscher |

Keywords | {{{keywords}}} |

Published | 2008 |

Journal | None |

No. of pages | 21 |

## Abstract

*Proceedings of The Unified Theories Conference (2008).* From observational data and our theoretical analysis, we demonstrate that a scaling law can be written for all organized matter utilizing the Schwarzschild condition, describing cosmological to sub-atomic structures. Of interest are solutions involving torque and Coriolis effects in the field equations. Significant observations have led to theoretical and experimental advancement describing systems undergoing gravitational collapse, including vacuum interactions. The universality of this scaling law suggests an underlying polarizable structured vacuum of mini white holes/black holes. We briefly discuss the manner in which this structured vacuum can be described in terms of resolution of scale analogous to a fractal-like scaling as a means of renormalization at the Planck distance. Finally, we describe a new horizon we term the ?spin horizon? which is defined as a result of a spacetime torque producing boundary conditions in a magnetohydrodynamic structure.

From observational data and our theoretical analysis, we demonstrate that a scaling law can be written for all organized matter utilizing the Schwarzschild condition, describing cosmological to sub-atomic structures. Of interest are solutions involving torque and Coriolis effects in the field equations. Significant observations have led to theoretical and experimental advancement describing systems undergoing gravitational collapse, including vacuum interactions. The universality of this scaling law suggests an underlying polarizable structured vacuum of mini white holes/black holes. We briefly discuss the manner in which this structured vacuum can be described in terms of resolution of scale analogous to a fractal-like scaling as a means of renormalization at the Planck distance. Finally, we describe a new horizon we term the ?spin horizon? which is defined as a result of a spacetime torque producing boundary conditions in a magnetohydrodynamic structure.